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Methionine metabolism influences genomic
architecture and gene expression through
H3K4me3 peak width
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Nutrition and metabolism are known to influence chromatin biology and epigenetics through

post-translational modifications, yet how this interaction influences genomic architecture and

connects to gene expression is unknown. Here we consider, as a model, the metabolically-

driven dynamics of H3K4me3, a histone methylation mark that is known to encode infor-

mation about active transcription, cell identity, and tumor suppression. We analyze the

genome-wide changes in H3K4me3 and gene expression in response to alterations in

methionine availability in both normal mouse physiology and human cancer cells. Surpris-

ingly, we find that the location of H3K4me3 peaks is largely preserved under methionine

restriction, while the response of H3K4me3 peak width encodes almost all aspects of

H3K4me3 biology including changes in expression levels, and the presence of cell identity

and cancer-associated genes. These findings may reveal general principles for how nutrient

availability modulates specific aspects of chromatin dynamics to mediate biological function.
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Genes interact with environmental factors such as nutrition
to shape the epigenome that together influences gene
activity and organismal physiology. Metabolism is also

shaped by genes and environment and has a substantial con-
tribution to epigenetics1–4. This nexus is essential in numerous
biological contexts, including maintaining different stages of
pluripotency5–8, mediating an immune response9,10, promoting
or suppressing cancer progression11–16, and transducing infor-
mation about metabolic health and longevity from parent to
offspring17–19. The molecular foundation of this interaction is in
large part determined by the modifications on chromatin.

Chromatin is affected by metabolism through changes in the
concentrations of metabolites that serve as substrates and cofac-
tors for post-translational modifications. These concentrations
are dynamic and are mediated by changes in metabolic pathway
activity or flux that arise from transcriptional programs and
nutrient availability. For example, histone methylation requires S-
adenosylmethionine (SAM) as the universal methyl donor. SAM
is derived from methionine20 and its concentration can fluctuate
in physiological conditions around values that can limit the
activity of histone methyltransferases21.

In plasma, methionine is in some reports the most dynamic of
the 20 amino acids and the variation can to a large extent be
explained by diet22. Recently work from us and others has shown
that dietary modulation of methionine concentrations that
approach the lower end of what can be observed in humans leads
to bulk changes in the levels of histone methylation22,23. Other
studies have reported similar findings in that changes to SAM
levels or to the levels of alpha-ketoglutarate that modify the
activity of demethylase enzymes induce global changes in the
levels of histone modifications5,12,24–32. When these modifica-
tions are known to mark key aspects of chromatin status, global
changes could have broad consequences to epigenomic programs.
How these bulk changes to the levels of post-translational mod-
ifications on chromatin alter the genomic architecture of histone
marks and relate to gene expression is, however, largely unknown.

One attractive model to investigate this interaction at the
genome scale is the tri-methylation of histone H3 on lysine 4
(H3K4me3). The global (i.e., bulk) levels of this mark are dyna-
mically and reversibly responsive to the levels of methionine22. In
addition, there are numerous lines of evidence indicating that the
structural features of H3K4me3, such as the width or breadth of
the peak as deposited over a genic region, encode information
such as gene activity, and gene function such as the presence of a
developmental program, cell type identity, or a tumor sup-
pressor33–37. Thus, changes in H3K4me3 may be relevant to
developmental transitions and tumor suppression. How meta-
bolic dynamics that occur due to differences in nutritional status
or metabolic pathway activity might affect these programs and
gene activity related to H3K4me3 is largely unknown.

We have shown previously that methionine availability mod-
ulates bulk levels of H3K4me3 by modifying SAM concentra-
tions22. In this present study, we question whether changes in
methionine availability that are known to affect global levels of
H3K4me3 affect specific aspects of the genomic architecture and
gene expression regulation. We consider a mouse model of dietary
methionine restriction (MR) and focused our analysis on liver. In
this organ, this diet results in changes to bulk levels of H3K4me3.
Similar changes occur in cultured human cancer cells (HCT116)
subjected to acute MR in culture media, that together provide a
complementary set of two species, environmental conditions,
biological statuses (health and cancer), models (in vitro and
in vivo) and two tissues. We study genome-wide H3K4me3
dynamics using a quantitative ChIP-seq analysis that considers
peak geometry and characterize the connection to gene expression
dynamics. We find that height and area of the peaks are overall

reduced, which account for most of the global changes. Strikingly,
however, while the most conserved feature of H3K4me3 dynamics
is the peak width, changes in peak width but not other features of
peak geometry reflect important cellular processes previously
linked to H3K4me3, including cell identity-related gene expression
programs and the dynamics of gene expression.

Results
MR reduces H3K4me3 but maintains its genomic distribution.
To begin to study the impact of methionine availability on the
genomic architecture of H3K4me3, we applied chromatin
immunoprecipitation with sequencing (ChIP-seq) to map geno-
mic locations enriched with H3K4me3 in HCT116 cells cultured
under high (100 μM) and low, MR (3 μM) methionine availability
which is known to lead to several-fold global changes in the bulk
levels of H3K4me322. Aligning the reads to a reference genome
followed by peak calling identified a set of H3K4me3 peaks, i.e.,
genomic regions significantly enriched (MACS2 enrichment Q-
value <1e-5) with ChIP-seq reads in comparison to the control
(Fig. 1a). Comparing total peak number (coefficient of variation
(CV)= 0.01, Fig. 1b), genomic location (Jaccard index= 0.88,
Fig. 1c), and the set of genes marked by peaks (Jaccard index=
0.92, Supplementary Fig. 1a) between high and low methionine
conditions showed that the distribution of H3K4me3 genomic
locations was highly conserved in response to MR (Fig. 1b, c)
while an overall reduction in H3K4me3 in peak intensity also
observed (Supplementary Fig. 1b, c). Genes with gained or lost
H3K4me3 peaks in response to MR tended to be observed in
smaller peaks (Wilcoxon rank-sum P-value < 1e-4 for five out of
the six comparisons, Supplementary Fig. 1d, e) and were not
significantly enriched with specific biological functions compared
to randomly chosen gene sets (median(−log10(enrichment Q-
value))= 4.25 for gained peaks compared to 7.76, 8.05, and 8.98
for three random gene sets of identical size, Supplementary
Fig. 1f, and median(−log10(enrichment Q-value))= 3.00 for lost
peaks compared to 7.12, 6.05, and 5.08 for three random gene sets
with identical size, Supplementary Fig. 1g) and thus likely attri-
butable to technical noise. We also analyzed the composition of
genomic elements covered by the peaks and found, as has been
reported with H3K4me338, that most peaks (11,210 peaks, 81%)
covered promoter regions with a smaller subset of peaks (2599
peaks, 19%) that appeared on non-promoter regions such as
intergenic regions and introns (Supplementary Fig. 1h). To fur-
ther investigate these changes, we next developed several quan-
titative descriptors for individual peaks (Fig. 1d). We used height,
area, and width to evaluate the size of the peaks and compared
these metrics in high and low methionine conditions. Genomic
regions in the high and low methionine conditions were merged
(Fig. 1a) to include less abundant peaks called only in one con-
dition in the analysis. All three peak size descriptors showed high
correlations (Spearman’s rank correlation coefficient >0.95 and
random permutation test P-value < 1e-323) between high and low
methionine conditions (Fig. 1e), implying that the overall
H3K4me3 landscape (i.e., relative size of each individual peak) is
robust to methionine availability (linear regression coefficient=
0.87 for width, 0.85 for height, and 0.70 for area).

To determine whether this conservation in H3K4me3
dynamics under MR extends to normal physiology and under a
longer-term alteration in nutrient availability that has beneficial
health effects, we investigated the effects of MR on H3K4me3
in vivo. Under these conditions, MR has been shown to alter
methionine metabolism, improve metabolic physiology in liver,
extend life-span, and reduce global levels of H3K4me322,39–41.
Thus, this mouse model of liver physiology in combination with
the human cancer cell model provides a breadth of model systems
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covering both short-term and long-term nurtrient alterations,
both in vitro and in vivo systems, and both pathological and
healthy contexts. We focused on liver in profiling the epigenomics
and transcriptomics because it is the metabolic organ which is

most responsive to metabolic reprogramming and there are liver-
related phenotypes associated with MR related to metabolic
health40. Livers were obtained from C57BL6 adult mice on a diet
with either high methionine (0.84% w/w) or low, MR methionine
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(0.12% w/w) for 12 weeks, and ChIP-seq of H3K4me3 was
conducted (Fig. 1f). Quantitation of bulk levels of H3K4me3
under these two conditions confirmed as was previously
published that this level of dietary MR was sufficient to reduce
the levels of H3K4me322. This physiological MR also revealed
that the overall distribution of H3K4me3 was conserved between
the different nutrient conditions as corroborated by conserved
peak numbers (CV= 0.06, Supplementary Fig. 2a), location
(Jaccard index= 0.82, Supplementary Fig. 2b), and marked genes
(Jaccard index= 0.90, Supplementary Fig. 2c). High correlations
in the values of peak height, area, and width between high
methionine and low methionine conditions were also observed
with peak width as the most conserved (Fig. 1g, linear regression
coefficient= 0.99 for width compared to 0.85 for height and 0.80
for area). Consistent with what was found in human cancer cells,
H3K4me3 peaks gained or lost in response to MR in mouse liver
also tended to be significantly smaller peaks than those conserved
in both high and low methionine conditions (Wilcoxon rank-sum
P-value < 1e-3 for five out of the six comparisons, Supplementary
Fig. 2d, e) and were not enriched with specific biological function
compared to randomly chosen genes containing H3K4me3
(median(−log10(enrichment Q-value))= 3.09 for gained peaks
compared to 4.03, 4.76, and 3.39 for three random gene sets with
identical size, Supplementary Fig. 2f, and median(−log10(enrich-
ment Q-value))= 14.62 for lost peaks compared to 16.58, 15.75,
and 13.27 for three random gene sets with identical size,
Supplementary Fig. 2g). Reduction in the overall H3K4me3 signal
was also observed (Supplementary Fig. 2h, i) as was a conserved
distribution of genomic elements (84% promoter peaks and 16%
non-promoter peaks, Supplementary Fig. 2j).

To assess the robustness of the quantitative peak descriptors to
variation in ChIP-seq data analysis methodologies, we repeated
the calculations using several different peak-calling algorithms.
Although the total number of peaks (CV= 0.12 for human cancer
cells, Supplementary Fig. 3a, and CV= 0.24 for mouse liver,
Supplementary Fig. 3b) and total length of genomic regions
covered by peaks (Jaccard index= 0.60 for human cancer cells,
Supplementary Fig. 3c, and Jaccard index= 0.43 for mouse liver,
Supplementary Fig. 3d) exhibited some variation among methods,
reads mapped to peaks (CV= 0.0073 for human cancer cells,
Supplementary Fig. 3e, and CV= 0.0078 for mouse liver,
Supplementary Fig. 3f), genes associated with peaks (Jaccard
index= 0.78 for human cancer cells, Supplementary Fig. 3g, and
Jaccard index= 0.66 for mouse liver, Supplementary Fig. 3h), and
dynamics of peak height, area, and width (average Spearman’s
rank correlation coefficient= 0.92 for human cancer cells and
0.86 for mouse liver, random permutation test P-values < 1e-323
for all comparisons, Supplementary Fig. 4) were concordant,
implying that quantitation of peak dynamics was robust to the
ChIP-seq data analysis method used. Taken together, these results
indicate that changes in metabolism mediated by methionine
availability, despite altering global levels of histone methylation,
do not induce a complete redistribution of H3K4me3 marks on
the genome.

H3K4me3 width dynamics encode biological information.
Although the genomic positioning of H3K4me3 was conserved in
response to changes in methionine availability, we observed that
peak height, area, and width were affected to different extents. To
further investigate these differences, we computed the Spearman’s
rank correlation coefficients between fold changes in peak height,
area, and width for both HCT116 cells and mouse liver and found
that fold changes in the width and in the other two parameters
were less correlated (Spearman’s rank correlation coefficient <
0.4) in both models (Fig. 2a, b) relative to other comparisons. The

lower correlation between changes in peak width and changes in
the other two peak features suggested that a change in peak width
might encode a different dimension of information. To test this
hypothesis, we conducted pathway enrichment analysis with the
Gene Set Enrichment Algorithm (GSEA)42 on the peaks with
sensitive (larger reduction under MR) and robust (smaller
reduction under MR) height, area, and width (Fig. 2c) using the
Molecular Signatures Database (MSigDB)43. For each category of
peak dynamics, the number of significantly enriched (GSEA FDR
Q-value < 1e-5) pathways was used to quantify association of this
category with biological functions. In cultured cancer cells, the
change in peak width exhibited the strongest signal for enrich-
ment of specific biological processes as measured by the number
of significantly enriched pathways (298 pathways significantly
enriched in sensitive width compared to 131 in robust width and
less than 60 in all other categories, Fig. 2d). In mouse liver, the
consistency of the peak width exhibited the strongest signal (48
pathways significantly enriched in robust width compared to 14
in robust area and 0 in all other categories, Fig. 2e). This sur-
prising finding appears to indicate that biological information
that occurs in response to changes in methionine availability is
encoded in H3K4me3 peak width.

To further quantify the information contained in peak width,
we annotated the significantly enriched pathways in each case by
classifying them into categorical subsets involving fundamental
cellular function, response to stimulus, cell type (cancer,
proliferation-related pathways for human cancer cells and
metabolism, multicellular organ-related pathways for mouse liver),
transcriptional regulation, differentiation and development, and
cancer (Fig. 2f). We next computed the fraction of each category
in the pathways enriched in sensitive width in cancer cells and
those enriched in robust width in liver. Unexpectedly, these two
sets were enriched with cell type-specific biological functions.
Proliferation and cancer-related pathways were enriched in peaks
with sensitive width in cancer cells (154 out of the 298 enriched
pathways, Fig. 2g, h), while metabolism and multicellular organ-
related pathways were enriched in peaks with robust width in
mouse liver (35 out of the 48 enriched pathways, Fig. 2i, j).
Together these findings indicate that the peak width dynamics in
response to MR encodes information about biological function.

H3K4me3 width dynamics encode cell type-specific TF bind-
ing. To further explore this relationship, we probed additional
aspects of genomic architecture. Using a motif analysis algorithm,
HOMER44, we searched for transcription factor (TF) binding
motifs enriched in the subsets of the different geometrical features
of H3K4me3 peaks that change or remain consistent during MR.
Peak subsets with the 500 most sensitive peaks or 500 most robust
peaks were considered in this analysis (Fig. 3a). The complete set of
H3K4me3 peaks was used as the background model (Fig. 3b). In
cultured cancer cells, TF binding motifs were only enriched (one-
sided Fisher’s exact test Q-value < 0.05) in peaks with sensitive
width (78 motifs enriched in sensitive width compared to 1 for
robust area, 2 for robust width, and 0 for all other peak sets, Fig. 3c,
Supplementary Fig. 5a), while in mouse liver TF binding motifs
were only enriched in peaks with robust width (249 motifs enri-
ched in robust width compared to 0 for all other peak sets, Fig. 3d,
Supplementary Fig. 5b). These findings were also found to be
robust to the size of peak subsets chosen (Supplementary Fig. 5c,
d). These two sets of TF binding motifs have little overlap (Jaccard
index= 0.05 between the two sets of 10 motifs with smallest
enrichment Q-values), suggesting that the role of H3K4me3
dynamics in relation to TF binding has a tissue-specific function.
The top scoring TF motifs in cancer cells that associated with
sensitive H3K4me3 peak width dynamics tended to involve cancer-
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associated TFs such as c-MYC and ETS in cancer cells (Fig. 3e) and
liver-specific TFs such as RXR and ESRRB in liver (Fig. 3f).

To investigate the binding of these TFs, we obtained ChIP-seq
datasets for two TFs putatively associated with H3K4me3 width
in each system (Supplementary Fig. 6a) and computed the

overlap between the TF binding sites and H3K4me3 peak subsets.
We also chose one TF without binding motifs associated with
peak width for each system as a negative control (Supplementary
Fig. 6b). We found that the cancer-related TFs, MYC (Supple-
mentary Fig. 6c), and ELF1 (Supplementary Fig. 6d) indeed had

H3K4me3 width dynamics
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binding sites enriched (one-sided Fisher’s exact Q-value < 1e-10)
in peaks with sensitive width in human cancer cells, while the
liver-specific TFs, HNF4a (Supplementary Fig. 6e), and RXRa
(Supplementary Fig. 6f–h) were also enriched (one-sided Fisher’s
exact Q-value < 1e-10) in peaks with robust width in mouse liver.
Such patterns were not observed in the TFs used as negative
controls (one-sided Fisher’s exact Q-value= 1, Supplementary
Fig. 6i, j). We also observed the strongest correlation between
width dynamics and the number cell type-specific TFs bound to
the genomic region containing the H3K4me3 peak (one-way
ANOVA P-value= 3.53e-319 for width changes in human cancer
cells and 2.98e-189 for width changes in mouse liver,

Supplementary Fig. 7). This concordance suggests that cell
identity is encoded in the H3K4me3 width dynamics but not in
any other structural or locational aspect of H3K4me3. A previous
study has found that broad H3K4me3 peaks are associated with
tumor suppressor gene function in normal cells34. We also found
that TFs with binding motifs enriched in preserved H3K4me3
peak width in liver tended to be tumor suppressors, while those
enriched in sensitive H3K4me3 peak width in cancer cells tended
to be oncogenes (chi-squared test P-value= 0.0324, Fig. 3g),
suggesting that H3K4me3 width dynamics under MR may also
encode information about tumor suppression or progression,
depending on the cell or tissue type. Altogether, these analyses
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Fig. 4 H3K4me3 width dynamics predict differential gene expression. a Framework of RNA-seq data analysis. Mouse image used with permission from
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highlight H3K4me3 peak width dynamics as the information
carrier under MR in both human cancer cells and mouse liver.

H3K4me3 width dynamics predict differential gene expression.
Despite a well-known association of the H3K4me3 mark with
active promoters, the exact role of H3K4me3 in mediating gene
expression is a matter of current debate45,46. We therefore asked
whether any aspects of genomic alterations in H3K4me3 track
with changes in gene expression under MR. We first quantified
gene expression levels using RNA sequencing (RNA-seq) under
high and low methionine conditions and correlated the gene
expression levels with H3K4me3 peak features again in both
cancer cells and mouse liver (Fig. 4a). In cancer cells, we observed
7709 expressed genes and 5118 non-expressed genes marked by
H3K4me3 (Supplementary Fig. 8a). There were also 11,412
expressed genes without H3K4me3 marks, indicating in our
models that the presence of the H3K4me3 mark is neither
necessary nor sufficient for gene expression. Nevertheless,
expressed genes with no H3K4me3 had significantly lower
expression levels (Wilcoxon rank-sum P-value < 1e-323, Supple-
mentary Fig. 8b), supporting the well-characterized association
between H3K4me3 and active gene expression. This observation
was further corroborated by significantly smaller H3K4me3 peak
sizes in non-expressed genes (Wilcoxon rank-sum P-values < 1e-
26 for height, area, and width, Supplementary Fig. 8c–e). An
evaluation of the correlation coefficients between H3K4me3 peak
height, area, width, and gene expression levels revealed significant
positive correlations (Spearman’s rank correlation coefficient >
0.2, random permutation test P-value < 1e-50) between all three
peak size descriptors and gene expression levels in both high and
low methionine conditions (Fig. 4b, Supplementary Fig. 8f).
Consistently, in mouse liver, we identified 9417 expressed and
2449 non-expressed genes with H3K4me3, as well as 9282
expressed genes without H3K4me3 (Supplementary Fig. 9a). In
accordance with our findings in cultured human cells, strong
correlations between the presence of H3K4me3 and gene
expression levels were also observed in liver (P-value < 1e-20 for
all Wilcoxon rank-sum and random permutation tests, Fig. 4c,
Supplementary Fig. 9b–f). Thus, in our models, the presence of an
H3K4me3 peak, while not a requirement for gene expression,
predicts overall whether a gene is expressed, and the magnitude of
the peak does appear to contain information about overall gene
expression level. This finding is consistent with the well-known
association between H3K4me3 around transcription start sites
(TSS) and active transcription47.

Having established a baseline for the relationship between
H3K4me3 and gene expression, we next sought to study whether
changes in the geometrical features of H3K4me3 are connected to
changes in gene expression. We compared expression levels of
genes associated with different H3K4me3 dynamics in cancer
cells (Fig. 4d) and liver (Fig. 4e) under high methionine
conditions. In addition to our previous findings that sensitive
H3K4me3 peak width in cancer cells and robust H3K4me3 peak
width in mouse liver are indicative of biological function, we
found that genes associated with these peaks also exhibit
significantly higher expression levels (Wilcoxon rank-sum and
Kolmogorov–Smirnov P-values < 0.05, Fig. 4d, e, Supplementary
Fig. 10). We then conducted differential expression analysis to
identify the genes with altered expression in response to MR. In
human cancer cells, we found 1034 genes upregulated (Wald test
Q-value < 0.05, log2(fold change) > 0) and 1161 genes down-
regulated (Wald test Q-value < 0.05, log2(fold change) < 0) under
MR (Fig. 4f) and 287 upregulated (Wald test Q-value < 0.05,
log2(fold change) > 0) and 431 downregulated (Wald test Q-value
< 0.05, log2(fold change) < 0) genes in mouse liver (Wald test Q-

value < 0.05) (Fig. 4g) in diverse classes of genes. It is noteworthy
that differential gene expression in vivo is confounded by factors
including composition of liver by different cell types and larger
variation between individual mice. Thus, as expected fewer genes
were found to be differentially expressed in mouse liver.

We next asked if changes to or consistencies in the geometrical
features of H3K4me3, especially in peak width, can predict
changes in gene expression. We first compared the fraction of
differentially expressed genes that contain or are absent of
H3K4me3. We found that in both cancer cells and liver,
H3K4me3-marked genes were enriched in both upregulated
and downregulated genes (one-sided Fisher’s exact P-value=
1.82e-12 for upregulated genes and 1.89e-98 for downregulated
genes in human cancer cells, Fig. 4h, and 4.22e-4 for upregulated
genes and 4.43e-16 for downregulated genes in mouse liver,
Fig. 4i), suggesting that the presence of H3K4me3 notes a
tendency of differential expression during MR. Next, we
correlated fold changes in H3K4me3 peak height, area, width
with changes in gene expression levels and found that H3K4me3
peak width dynamics significantly correlated (random permuta-
tion test P-value < 0.05, Spearman’s rank correlation coefficient >
0.1) with alterations in gene expression levels, and this correlation
was consistent in both models (Spearman’s rank correlation
coefficient= 0.14 for human cancer cells and 0.17 for mouse liver,
Fig. 4j, k). On the other hand, although H3K4me3 peak height
and area dynamics were also found to correlate with differential
gene expression in mouse liver (random permutation test P-value
< 0.05, Spearman’s rank correlation coefficient > 0.15, Fig. 4k), the
strength of these correlations was smaller in human cancer cells
(Spearman’s rank correlation coefficient < 0.06, Fig. 4j). Restrict-
ing the analysis to the subset of peaks located at promoters
(Supplementary Fig. 11a) or altering the data analysis pipeline
(Supplementary Fig. 11b) had minimal effects on the resulting
correlation coefficients (absolute differences in Spearman’s rank
correlation coefficients < 0.04 for data in Fig. 4j, Supplementary
Fig. 11a, b). To further assess the predictability of changes in gene
expression from changes in peak height, area, and width, we
performed multiple linear regressions with changes in peak
height, area, and width as the independent variables and changes
in gene expression as the dependent variable. Change in peak
width is the only variable with significant non-zero linear
coefficients in predicting changes in gene expression in both
human cancer cells and mouse liver (P-value= 3.75e-15 in
human cancer cells and 8.39e-7 in mouse liver, Supplementary
Fig. 11c, d). Interestingly, we also observed a stronger correlation
between H3K4me3 width changes and gene expression changes in
genes with H3K4me3 peaks bound by more TFs putatively
associated with H3K4me3 width in both human cancer cells
(Spearman’s rank correlation coefficient between width changes
and gene expression changes= 0.19 in peaks bound by 2 TFs
compared to 0.10 for 0 TF and 0.12 for 1 TF, Supplementary
Fig. 11e) and mouse liver (Spearman’s rank correlation coefficient
between width changes and gene expression changes= 0.22 in
peaks bound by 2 TFs compared to 0.18 for 0 TF and 0.19 for 1
TF, Supplementary Fig. 11f), suggesting that TFs associated with
H3K4me3 width dynamics regulate expression of their target
genes thus mediating the connection between H3K4me3
dynamics and gene expression dynamics. Moreover, peaks with
sensitive width in human cancer cells tended to be associated with
downregulated genes (one-sided Fisher’s exact test P-value=
0.02, Supplementary Fig. 11g), which were also enriched with
more cancer-related pathways (305 pathways among which 188
were cancer-related enriched in downregulated genes compared
to 2 pathways enriched in upregulated genes, Supplementary
Fig. 11h, i), suggesting that the correlation between H3K4me3
width dynamics and differential gene expression is linked to
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biological outcomes under MR. Similar pattern was also observed
in mouse liver, in which upregulated genes were associated with
peaks with robust width and enriched with liver-specific functions
(Supplementary Fig. 11j–l). Taken together, H3K4me3 width
dynamics, but not area or height, is the predictor of alterations in
gene expression in both human cancer cells and mouse liver.
Moreover, peak width also encodes information of gene
expression levels under normal methionine conditions in addition
to cell type-specific biological functions and TF binding
preferences.

Discussion
Numerous studies have shown that global levels of histone and
DNA modifications are influenced by metabolism and changes to
nutrient availability1–4. Biological outcomes, however, result from
reprogramming of chromatin state which influences regulation of
gene expression and these mechanisms are still poorly under-
stood. This study possibly identifies general principles about how
specific aspects of the genomic architecture of a histone mark are
affected by nutrient availability.

We found that H3K4me3, a chromatin mark known to
associate with active transcription, responds to MR with a global
compression of peak area and height across most modified sites,
which is consistent with the substantial reduction of bulk levels
observed previously22,23. H3K4me3 peak width, despite being the
most conserved feature under MR, uniquely encoded, in its
dynamics, information about cell identity, TF binding pre-
ferences, tumor suppression, and gene expression that are not
reflected in changes in other aspects of H3K4me3. Peak width
dynamics was also the only predictor of gene expression altera-
tions in both human cancer cells and mouse liver. In addition to
peak width encoding information about cell identity33,34, we
showed that its dynamics under alterations in methionine
metabolism is also a link between H3K4me3 and changes to gene
expression. This finding extends our understanding of how
metabolism influences chromatin biology since it identifies
aspects of biological specificity in H3K4me3 dynamics across the
genome.

Finally, we observed opposing effects in cultured human cancer
cells and in mouse liver. H3K4me3 width changes in cancer cells
and width conservation in liver marked biological functions and
gene expression changes. In both cases, the biological associations
with these dynamics may be attributed to the function of the
tissue and the physiological or pathophysiological status of the
model in relation to the ongoing gene expression programs. The
discrepancy between cancer cells and healthy tissue may also
reflect differences between cancerous and normal cell types in
responding to alterations in environmental factors. We speculate
that, at least in the context of MR, cell type-specific functions in
normal tissues are more robust under alteration in environmental
variables to ensure normal function, while cancer cells have more
flexibility which potentially maximizes fitness in a varying
environment. Notably, we found that genes related to prolifera-
tion and survival of HCT116 cancer cells identified in a CRISPR
screen48 exhibited significantly elevated sensitivity in both
H3K4me3 width (Wilcoxon rank-sum P-value= 1.47e-136) and
gene expression (Wilcoxon rank-sum P-value= 8.15e-116) in
response to MR (Supplementary Fig. 12), suggesting that the
influences of MR on H3K4me3 peak width are indeed linked to
functional outcome. Although further investigation is needed to
unravel the mechanism conferring this discrepancy between
pathological and healthy models, the general principle that the
peak width is the most informative parameter in H3K4me3
dynamics upon changes in nutrient availability is conserved in
both models.

Although long appreciated to be a signature of active gene
expression47, the role of H3K4me3 in regulation of gene
expression remains controversial46. There is evidence that
H3K4me3 interacts with transcriptional and splicing machineries
to regulate gene expression49,50, while other studies have con-
cluded that the timing of H3K4me3 changes across biological
conditions precludes it having an active role in gene expres-
sion51,52. Other studies have concluded that the mark may affect
the robustness of transcriptional programs33. Recent studies of
H3K4me3 during early embryo development have further sug-
gested that the function of H3K4me3 in this process may be to
counteract DNA methylation at specific genomic regions35,37,
supporting a function independent of facilitating transcription. In
this study, we showed that reprogramming of the H3K4me3
landscape under an alteration in nutrient availability was indeed
related to alterations in gene expression but through a specific
mechanism involving the dynamics of H3K4me3 peak width.
Although more work is needed to establish definitive causality
between H3K4me3 and gene expression dynamics, our studies
support a model that a subset of overall gene expression appears
to be responsive to changes in H3K4me3 and that these programs
are encoded in changes in peak width.

There remain numerous unanswered questions on the inter-
action between metabolism and chromatin biology. Chromatin
status is a manifestation of more than 100 covalent modifications
and multiple assembly factors53,54 and numerous metabolic
pathways beyond one-carbon metabolism directly interact with
chromatin. It is to be determined how general are the principles
we found regarding H3K4me3 peak width and whether they
extend to other marks or to other metabolic changes that alter
methylation such as those regulated by mitochondrial metabolism
and alpha-ketoglutarate. For example, H3K4me3 levels are also
reduced by knockdown of the histone methyltransferase MLL1 in
HCT116 cells55, but the conserved and unique features in this
process compared to MR is not clear, although there is existing
literature that has defined some aspects of the specificity of the
requirements of methyltransferases56–58. In conclusion, this study
may define principles of how metabolism influences chromatin
biology, that is, almost all aspects of H3K4me3 biology, including
cell identity, tumor suppression and progression, and gene
expression are encoded in H3K4me3 width dynamics.

Methods
Methionine restriction in human cancer cells and mouse. HCT116 cells were
obtained from ATCC and the stock used for this study was recently validated as
bona fide HCT116 cells via the Duke University DNA Analysis Facility Human cell
line authentication service and validated to be mycoplasma free. Cells were cul-
tured in RPMI with 10% FBS (containing 30 micromolar methionine). Plated cells
were first cultured in 100 micromolar methionine and switched to 3 micromolar
for 24 h upon harvesting lysates. Seven-week-old male C57BL/6J mice were ran-
domized and fed with either 0.84% (w/w) methionine control diet or 0.12% (w/w)
methionine MR diet for 12 weeks and fasted before being sacrificed. Mice were
randomized to minimize difference in body weight between the control and MR
groups. No blinding was used. All animal procedures were approved by the
Institutional Animal Care and Use Committee of the Orentreich Foundation for
the Advancement of Science (Permit Number 0511MB). Input chromatin was
pooled from all samples in each replicate.

H3K4me3 ChIP-seq data analysis. ChIP was performed using 1.5 × 107 cells and
the Millipore ChIPAb+H3K4me3 antibody (cat #17G614, lot #2196044, dilution
3:500) with Protein A Agarose beads (Millipore, cat #16G125, lot #2444123). In
addition, we applied a spike-in normalization strategy for generating quantitative
ChIP-seq data59, in which spike-in Drosophila chromatin and spike-in antibody
for Drosophila H2Av (Active Motif cat #61686, dilution 1:250, 2 μg total) was
mixed with chromatin from the HCT116 cells before the chromatin IP step with a
fixed ratio (2:1, Drosophila:HCT116 chromatin) as a reference. Libraries were
prepared according to Illumina instructions and sequenced on the Illumina HiSEQ
2500 sequencer in Rapid Run Mode at the Duke GCB Sequencing Shared Resource.
Reads were aligned to a combinational genome consisting of the human reference
genome hg19 and the Drosophila reference genome dm6 using Bowtie260.
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Alignment files were then filtered according to their alignment scores and down-
sampled to ensure each file contains the same amount of unique Drosophila reads.
Finally, reads mapped to hg19 in the normalized alignment files were kept for
peak-calling and other following analyses. Replicate 1 for high methionine con-
dition was not used due to abnormally high fraction of Drosophila-originated reads
in this sample. Processing of alignment files was done using SAMtools61. Peaks
were called using the --broad mode of MACS262 and filtered with the criterion that
enrichment Q-value is smaller than 10−5. For mouse liver, ChIP-seq reads were
aligned to the mouse reference genome mm8 and normalized by sequencing depth.

Peaks annotation and size descriptors computation. H3K4me3 peak regions
called for different methionine conditions and replicates were merged using the
bedtools merge command in BEDTools package63 to generate a combinational
peak set for following annotation and computation of peak descriptors. Peaks were
assigned to genes with TSS closest to center of the peak region using Homer44. Peak
height, area, and width were computed on this combinational peak set using the
extended reads coverage files (that is, number of fragments extended from ChIP-
seq reads mapped to each base pair on the genome) generated by MACS2. Height
was computed by searching for position with highest read coverage. Area was
computed by integrating the reads coverage file over the peak region. Width was
quantified by first normalizing reads coverage profile of each peak to a probability
distribution function (i.e., area under the coverage curve= 1) and then calculating
standard deviation accordingly. Percentage peak areas on each type of genomic
elements were computed using C++ codes with genomic element annotation files
in the HOMER package and reads coverage files generated by MACS2 as inputs.
Replicates were merged by computing average between them.

Comparison between peak calling methods. H3K4me3 peaks were called using
Bayesian Change Point64, MUltiScale enrIchment Calling for ChIP-seq65, and
MACS2 either with (MACS2.broad) or without (iMACS2.narrow) the -broad
option. Default parameters for each of these methods were used. Generation of
unions and intersections of the peak sets and quantification of reads mapped to
peak regions was conducted with BEDTools using the commands bedtools merge,
bedtools intersect, and bedtools coverage. Extended read coverage profiles were
generated using MACS2 as described previously. Raw read coverage profiles were
generated from the normalized alignment files using the command bedtools gen-
omecov in BEDTools without applying the model in MACS2 for extension of reads
to whole fragments. For the comparison of H3K4me3 changes between peak-
calling algorithms, peaks called by the two algorithms assigned to the same gene
were compared with each other.

Pathway and TF binding motif enrichment analysis. Pathway enrichment ana-
lysis with GSEA was done using the tool “Run GSEAPreranked” in the javaGSEA
Desktop Application (http://software.broadinstitute.org/gsea/downloads.jsp). Gene
sets H (hallmark gene sets), C1 (positional gene sets), CP (canonical pathways), CP:
BIOCARTA (BioCarta gene sets), CP:KEGG (KEGG gene sets), CP:REACTOME
(Reactome gene sets), C3 (motif gene sets), C4 (computational gene sets), and C5
(GO gene sets) in the MSigDB 6.0 (http://software.broadinstitute.org/gsea/msigdb/
index.jsp) were included in the analysis. Genes were ranked in ascending order
according to changes in height, area, or width of H3K4me3 peaks associated with
them (for pathway enrichment analysis in genes with different H3K4me3
dynamics) or according to the Wald statistic (for pathway enrichment in differ-
entially expressed genes). The ranked lists of genes were used as input to the GSEA
algorithm with the parameter “enrichment statistic” set to “classic”. For all other
parameters, the default values were used. TF binding motif enrichment analysis was
done by the module findMotifsGenome.pl in HOMER. Lists of tumor suppressors
and oncogenes were obtained from the databases TSGene 2.066 and ONGene67.

TF ChIP-seq data analysis. Raw read files in SRA or FASTQ format for the TF
ChIP-seq experiments were downloaded using the accession numbers in Supple-
mentary Fig. 6A and B, aligned to the reference genome hg19 for HCT116 cells and
mm8 for mouse liver using Bowtie2, and filtered according to alignment scores
using SAMtools. SRA files were converted to FASTQ format using the command
fastq-dump in the SRA Toolkit (https://github.com/ncbi/sra-tools) before the
alignment. Peaks were called using MACS2 without the --broad option and filtered
with the criterion that the enrichment Q-value is smaller than 10−5. H3K4me3
peaks bound by a TF were defined as those H3K4me3 peaks overlapping with peaks
called from the corresponding TF ChIP-seq data. Fold enrichment of TF binding in
a H3K4me3 peak subset was defined as the ratio of fraction of peaks bound by the
TF in this H3K4me3 peak subset relative to the fraction of peaks bound by the TF
in the complete set of H3K4me3 peaks, that is:

Fold enrichment

¼ #ðH3K4me3 peaks bound by TF in subsetÞ=#ðH3K4me3 peaks in subsetÞ
#ðH3K4me3 peaks bound by TFÞ=#ðH3K4me3 peaksÞ :

Enrichment Q-values were computed by correcting P-values from one-sided
Fisher’s exact test using Benjamini–Hochberg procedure.

RNA-seq. Total RNA from HCT116 cells and mouse liver under high and low
methionine conditions was extracted using the PARIS kit (Life Technologies, cat
#AM1921), polyA selected and then sent to the Weill-Cornell Epigenomics core
(HCT116) and the Duke GCB Sequencing Shared Resource (mouse liver) for
library preparation and sequencing. Libraries were sequenced either on the Illu-
mina HiSEQ 2500 sequencer in Rapid Run Mode (HCT116) or on the Illumina
HiSEQ 4000 sequencer (mouse liver).

RNA-seq data analysis. Raw reads were aligned to the human reference genome
hg19 and mouse reference genome mm8, respectively, using TopHat268. Number
of reads mapped to each gene feature was first quantified using HTSeq69 with the
input of GTF files obtained from the UCSC Table Browser and then normalized
using DESeq270. Differential expression analysis was done with DESeq2. P-values
were adjusted using the Benjamini–Hochberg procedure. Genes with adjusted
differential expression P-values smaller than 0.05 were considered as differentially
expressed.

Fitness genes in human cancer cells. The list of fitness genes was extracted from
Table S2 of the published study on CRISPR-based screen of proliferation and
survival-related genes in HCT116 cells48.

Statistical analysis. The sample sizes were selected to enable evaluation of sta-
tistical significance of difference between groups. Comparison between replicates
was performed before the following analysis to ensure that the variance was similar
between the groups. For ChIP-seq, we performed two biological replicates in
human cancer cells and two technical replicates in mouse liver. For RNA-seq, we
performed two biological replicates in human cancer cells and six biological
replicates in mouse liver. For multiple hypothesis testing, the P-values were
adjusted using the Benjamini–Hochberg procedure. P-value < 0.05 or Q-value <
0.05 was considered statistically significant.

Data visualization. Heatmaps and average profiles showing the H3K4me3 ChIP-
seq signal were generated with the commands plotHeatmap and plotProfile in
deepTools. Other heatmaps and density scatter plots were created using MATLAB.
All bar graphs, pie graphs, and box plots were created using GraphPad Prism. In all
box plots, the boxes extend between the 25th and 75th percentiles, the center line
shows the median, and the whiskers represent the minimal and maximal values.
ChIP-seq tracks were created using Integrative Genomics Viewer (http://software.
broadinstitute.org/software/igv/).

Code availability. Codes are available at GitHub page of the Locasale Lab (https://
github.com/LocasaleLab/H3K4me3_MET_Restriction).

Data availability. Processed data are available at GitHub page of the Locasale Lab
(https://github.com/LocasaleLab/H3K4me3_MET_Restriction). Raw data are
available at the Gene Expression Omnibus database with accession number GEO:
GSE103602. Peak height, area, width, and gene expression values in different
conditions are available in Supplementary Data 1.
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