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ABSTRACT

Background

Cross-sectional studies have suggested that consumption of sulfur amino acids (SAAs),

including methionine and cysteine, is associated with a higher risk of type 2 diabetes

(T2D) in humans and with T2D-related biomarkers in animals. But whether higher long-

term SAA intake increases the risk of T2D in humans remains unknown.

Objectives

We aimed to investigate the association between long-term dietary SAA intake and risk

of T2D.
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Methods

We analyzed data collected from 2 different cohorts of the Framingham Heart Study, a

long-term, prospective, and ongoing study. The Offspring cohort (1991–2014) included

participants from fifth through ninth examinations, and the Third-Generation cohort

(2002–2011) included participants from first and second examinations. After excluding

participants with a clinical history of diabetes, missing dietary data, or implausible total

energy intake, 3222 participants in the Offspring cohort and 3205 participants in the

Third-Generation cohort were included. Dietary intake was assessed using a validated

FFQ. The relations between energy-adjusted total SAA (methionine and cysteine) intake

or individual SAA intake (in quintiles) and risk of incident T2D were estimated via Cox

proportional hazards models after adjusting for dietary and nondietary risk factors.

Associations across the 2 cohorts were determined by direct combination and meta-

analysis.

Results

During the 23 y of follow-up, 472 participants reported a new diagnosis of T2D in the 2

cohorts. In the meta-analysis, the HRs of T2D comparing the highest with the lowest

intake of total SAAs, methionine, and cysteine were 1.8 (95% CI: 1.3, 2.5), 1.7 (95% CI: 1.2,

2.3), and 1.4 (95% CI: 1.0, 2.1), respectively. The association of SAA intake with T2D was

attenuated after adjusting animal protein intake in sensitivity analyses.

Conclusions

Our findings show that excess intake of SAAs is associated with higher risk of T2D.

Dietary patterns that are low in SAAs could help in preventing T2D.
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CVD, cardiovascular disease; EAR, Estimated Average Requirement; FGF-21, fibroblast

growth factor-21; FHS, Framingham Heart Study; PH, proportional-hazards; PP2A,

protein phosphatase 2A; P/S fat ratio, ratio of polyunsaturated fat to saturated fat; SAA,

sulfur amino acid; T2D, type 2 diabetes.

Introduction

Epidemiological studies have shown that dietary patterns with high intakes of protein

are associated with high risk of type 2 diabetes (T2D) (1). The association between T2D

and protein intake depends on the protein quantity and source. Higher intakes of

proteins from legumes and seafood have been inversely associated with T2D risk,

whereas that from red meat showed positive association with T2D even after further

adjustment for total energy intake (2). Overall, these studies suggest that with their role

in protein synthesis, the source and composition of sulfur amino acids (SAAs) are

important in determining the risk of T2D.

In general, plant proteins have a lower concentration of the 2 proteinogenic SAAs,

methionine and cysteine. For example, it is estimated that SAA concentrations in

legumes, which are considered high in SAAs among plant protein sources, are only ∼25%

of the SAA content found in most animal-derived foods. This value drops to ∼10% for

most other plant protein sources (3, 4).

Accumulating evidence from animal and observational studies has suggested that higher

consumption of SAAs is associated with a higher T2D risk (5, 6). Methionine is an

essential amino acid that cannot be synthesized in vivo, whereas cysteine is considered

“conditionally essential” because individuals with specific disease conditions cannot

synthesize it (5, 7). However, both SAAs are abundant in the diet, particularly in meat and

fish proteins (8). According to the consensus of DRIs, the RDA for total SAAs in adults

aged ≥19 y is 19 mg/kg/d (9). According to the NHANES, the consumption of SAAs for

American adults well exceeds this recommendation (9, 10). Our previous study using

NHANES data found that higher dietary SAA intake was positively associated with

diabetes-related mortality (11). Studies also suggested that dietary intake of SAAs was

positively associated with T2D-related risk factors and biomarkers in humans (12, 13, 14,

15, 16). In NHANES participants, we also found that serum cholesterol, glucose, uric acid,

blood urea nitrogen, insulin, and glycated hemoglobin concentrations were higher in
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adult individuals with greater SAA intakes (10). Similar results were observed in a

Chinese study (16). A limitation of these previous observational studies is that dietary

intake was assessed only once, and no data were available on the impact of long-term

SAA consumption on incident risk for T2D. Therefore, we investigated the association

between long-term habitual dietary SAA intake and risk of T2D in 2 ongoing prospective

cohorts, the Offspring cohort and the Third-Generation cohort of the Framingham Heart

Study (FHS).

Methods

Study population

Participants were selected from the prospective community-based FHS Offspring and

Third-Generation cohorts, which have been extensively characterized (17, 18, 19). The

FHS Offspring cohort began in 1971 by enrolling adult offspring (and offspring’s spouses)

of the original FHS cohort participants. The Offspring cohort follow-up visits occurred

every 3–4 y and included physical examinations, anthropometric measurements,

laboratory tests, health-related questionnaires, and continuous surveillance for some

diseases. Dietary data were collected using validated FFQs from examination 5 (1991–

1995) (17). In 2002, adults with ≥1 parent in the Offspring cohort were enrolled in the

FHS Third-Generation cohort. They underwent similar examinations, questionnaires, and

surveillance as the Offspring cohort (19).

At baseline, 5497 and 4578 participants were enrolled in the Offspring cohort and Third-

Generation cohort, respectively. Participants were excluded if they had a history of

diabetes (n = 2197 in Offspring cohort and 174 in Third-Generation cohort), missing

dietary data (n = 78 in Offspring cohort and 1141 in Third-Generation cohort), or invalid

FFQs due to implausible total energy intake (<600 or >4200 kcal/d for males and <600 or

>4000 kcal/d for females: n = 58 in Third-Generation cohort) (20). After exclusions, data

from 6427 participants (3222 for the Offspring cohort and 3205 for the Third-Generation

cohort) were available for analysis. Supplemental Figure 1 shows the flow chart of study

participants.

Dietary assessment

Dietary intake was repeatedly assessed by using a validated semiquantitative FFQ at the
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fifth through ninth examination cycles in the Offspring cohort and the first and second

examination cycles in the Third-Generation cohort (21). Before each examination cycle,

the FFQs were mailed to each participant along with instructions for completing the

questionnaire for foods consumed over the past year. During the examination,

participants returned their completed questionnaires to trained staff, who checked them

for accuracy. The FFQs contained 131 food items and queried participants on the

frequency of consumption and serving sizes of these foods in the past year. Participants

were also asked to provide information on the use of dietary supplements. Absolute

intake of nutrients and nonnutrients was computed by multiplying each food item’s

frequency of consumption by the nutrient content of the specified portions.

A direct evaluation of the validity of dietary SAA intake from the FFQ used in the current

study has not been performed. However, the validity of food intake measurements based

on a comparison between the FFQ and two 7-d diet records collected during the year

time interval covered by the FFQ has been previously documented (20, 21, 22, 23).

Because absolute methionine and cysteine intake tended to be strongly correlated with

each other and with total energy and protein intake, exposures (methionine, cysteine, or

total SAAs; milligrams per day) were adjusted for energy intake using the residual

method (24).

Identification of T2D events

The study outcome was the occurrence of T2D between the date of return of the baseline

FFQ and the cutoff date (last follow-up available): April 2014 (Offspring cohort) or

February 2011 (Third-Generation cohort). In these cohorts, individuals who had a

nonfasting blood glucose concentration ≥200 mg/dL or fasting blood glucose

concentration ≥126 mg/dL in laboratory tests, or self-reported diabetes treatment

(validated by medication bag with medication or bottles/packs) (25), were identified as

diabetic in the follow-up (26, 27, 28). Due to extremely low rates of type 1 diabetes in the

cohorts (26, 29), a high proportion of T2D in diabetes in the United States (26), and the

age of participants, it was assumed that all identified diabetes cases were T2D, as

previously described (26).

Covariates

Age, sex, education, income, physical activity, and smoking status were self-reported.
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Height and weight were measured using standardized methods, and BMI was calculated

as kg/m . History of cardiovascular disease (CVD) was self-reported and included

nonfatal myocardial infarction and stroke. To ensure that other dietary components

would not confound the association between SAAs and T2D, we adjusted for total energy,

alcohol, magnesium, sodium, and energy-adjusted polyunsaturated fat to saturated fat

ratio (P/S fat ratio), calcium, vitamin A, vitamin C, vitamin B-6, and energy-adjusted

animal and plant protein, separately. These covariates were selected based on clear

trends in the distribution of these end points across SAA groups. The correlation

coefficients between energy-adjusted total SAA intake and the main confounders are

displayed in Supplemental Table 1.

Statistical analysis

Although the sample mean of SAA intake in each examination was stable and the

correlation for energy-adjusted SAA intake between each visit was moderate (∼0.5), we

used the cumulative average of SAA intake from baseline to the censoring events (30) to

minimize within-person variation. We generated quintile categories of energy-adjusted

intakes of methionine, cysteine, and total SAAs. Follow-up time was calculated from the

return of the baseline questionnaire to the date of diagnosis of T2D, death, loss of follow-

up, or end of study period, whichever occurred first. Cox proportional hazards models

were used to estimate the HRs and 95% CIs for associations between intakes of total SAAs

or individual SAAs (in quintiles) and risk of T2D. The proportional-hazards (PH)

assumption was evaluated based on the Schoenfeld residuals, and the PH assumption has

been found to be supported by a nonsignificant relation between residuals and time in

both cohorts. For multivariable analyses, model 1 was adjusted for basic characteristics

including age, sex, and total energy intake (kilocalories per day); model 2 was further

adjusted for lifestyle and dietary and nondietary factors that included BMI (BMI <18.5,

18.5 to <25, 25 to <30, and >30), income (income <US$50,000, and income ≥ US$50,000),

education (bachelor’s degree or above, or not), physical activity (moderate to vigorous

activity ≥3 times/wk, or not), smoking status (yes/no), alcohol intake (grams per day),

energy adjusted P/S fat ratio, calcium (milligrams per day), vitamin A (international units

per day), vitamin C (milligrams per day), and vitamin B-6 (milligrams per day), plus

magnesium (milligrams per day), and sodium (grams per day). Model 3 was additionally

adjusted for baseline health conditions including history of CVD. To address the

possibility of residual confounding from protein, we further tested models adjusted for
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energy-adjusted animal and plant protein intake based on fully adjusted models, and

additionally constructed a basic model using absolute total SAA intakes, absolute animal

and plant protein intake, and energy. Tests for trends were conducted by assigning the

median value to each quintile category and modeling this value as a continuous variable.

To summarize the associations across the 2 cohorts, we conducted a fixed-effect meta-

analysis because no heterogeneity by Cochran Q test was apparent between cohorts (P

value for heterogeneity >0.1 for all). Besides, direct combination of the 2 cohorts was

done to test the robustness of the summary of the associations. Additionally in a

sensitivity analysis, to test the robustness of the associations under different calculation

methods of exposure (31), we studied baseline total SAAs in relation with T2D and also

relating the cumulative average total SAA intake from examination 5 to examination 8 to

T2D diagnosed from examination 8 to examination 9. To further test for the robustness of

the findings, we conducted subgroup analysis. Individuals reporting dietary intake of

SAAs below the Estimated Average Requirement (EAR; 15 mg/kg/d) (32) were excluded (n

= 45 for Offspring cohort and 20 for Third-Generation cohort). All statistical tests were 2-

sided with P < 0.05 considered significant, and were conducted using SAS 9.4 (SAS

Institute Inc).

Ethical

The original data collection protocols were approved by the Institutional Review Board at

Boston University Medical Center, and written informed consent was obtained from all

participants. The present study protocol was reviewed and approved by the Pennsylvania

State University Institutional Review Board.

Results

At baseline, the average age of participants was 54.3 ± 9.80 y (women: 54.3 ± 9.74 y;

men: 54.3 ± 9.86 y) with an average BMI of 27.1 ± 4.71 (women: 26.4 ± 5.19; men: 28.0 ±

3.93) in the Offspring cohort; participants were younger (all: 40.3 ± 8.64 y; women: 40.0

± 8.69 y; men: 40.5 ± 8.58 y) and had similar BMI distribution (all: 26.6 ± 5.27; women:

25.6 ± 5.74; men: 27.7 ± 4.42) in the Third-Generation cohort. During the 23 y of follow-

up, 472 participants reported a new diagnosis of T2D (401 from the Offspring cohort and

71 from the Third-Generation cohort). The average annual incidence of T2D in the

Offspring and Third-Generation cohorts was 5.4 per 1000 persons and 2.5 per 1000
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persons, respectively.

Baseline characteristics of participants in both cohorts, categorized by quintiles of intake

of total SAAs, are presented in Table 1 as combined and separate for each cohort. In the

Offspring cohort, the means of the highest quintile of total SAAs, methionine, and

cysteine intake were 1.6-fold, 1.8-fold, and 1.6-fold greater than those of the lowest

quintile. Similarly, in the Third-Generation cohort, the means of the highest quintile of

total SAAs, methionine, and cysteine intake were 1.7-fold, 1.7-fold, and 1.9-fold greater

than those of the lowest quintile. The means of all quintiles of total SAAs, methionine,

and cysteine intake in the Third-Generation cohort were higher than corresponding

means of quintiles in the Offspring cohort. In the combined cohort, total SAA intake was

positively associated with BMI, physical activity, and intake of total protein, animal and

plant protein, vitamin A, vitamin B-6, vitamin C, calcium, magnesium, and sodium.

Participants with higher SAA intake were less likely to be smokers, alcohol drinkers, or

have a history of CVD compared with those with the lowest intake. This was consistently

observed in both cohorts.

TABLE 1. Baseline energy-adjusted characteristics of participants in the Offspring, Third-

Generation, and combined cohorts according to quintiles of intake of total SAAs

n 644 644 644 641 641 641 1285 1285 1285

Cases, n 60 95 98 7 12 26 85 98 99

SAA median,  mg/kg/d 29.3

(22.3,

36.3)

36.8

(29.3,

43.9)

48.5

(39.4,

57.4)

34.8

(27.0,

44.4)

40.6

(32.2,

50.1)

55.1

(43.7,

68.5)

32.2

(25.0,

40.6)

37.6

(30.0,

46.4)

51.5

(42.0,

63.3)

SAA median,  g/d 2.23

(2.02,

2.36)

2.85

(2.79,

2.91)

3.48

(3.36,

3.71)

2.59

(2.35,

2.74)

3.27

(3.20,

3.33)

4.05

(3.87,

4.34)

2.41

(2.17,

2.53)

3.06

(3.00,

3.12)

3.76

(3.61,

4.04)

Age, y 56.5 ±

10.3

53.8 ±

9.60

52.3 ±

9.33

40.3 ±

9.08

39.9 ±

8.27

40.5 ±

8.18

49.5 ±

12.6

47.3 ±

11.0

44.4 ±

10.1

1

Characteristics

Offspring cohort (n =

3222)

Third-Generation

cohort (n = 3205) Combined (n = 6427)

Q1 Q3 Q5 Q1 Q3 Q5 Q1 Q3 Q5

2

2



Sex, male, % 62.3 45.8 34.0 61.0 42.3 38.9 62.7 44.5 36.7

BMI, kg/m 26.7 ±

4.15

27.1 ±

4.87

27.6 ±

4.87

25.8 ±

4.68

26.6 ±

5.36

27.8 ±

6.00

26.4 ±

4.42

26.9 ±

5.21

27.7 ±

5.51

Smoking, yes, % 27.6 16.2 15.4 18.3 14.6 11.5 23.0 15.5 12.7

History of CVD, yes, % 30.0 28.1 22.1 4.37 2.96 3.12 19.1 14.3 9.26

Physical activity,

moderate to vigorous

activity ≥3 times/wk, %

29.3 23.5 27.3 77.9 77.5 79.9 49.6 48.9 60.5

Dietary intake

Energy, kcal/d 1960

± 595

1790 ±

523

1980

± 546

2230

± 658

1899 ±

581

2160 ±

615

2120 ±

634

1830 ±

536

2070

± 590

Polyunsaturated

fat/saturated fat

0.576

±

0.200

0.567

±

0.151

0.586

±

0.154

0.613

±

0.243

0.589

±

0.159

0.586

±

0.188

0.588

±

0.216

0.586

±

0.167

0.588

±

0.180

Protein, g/d 61.0 ±

7.27

78.6 ±

2.44

96.6 ±

9.58

71.3 ±

8.29

88.9 ±

3.48

110 ±

14.1

60.0 ±

7.98

.83.8 ±

2.91

103 ±

12.4

Animal protein, g/d 38.4 ±

7.79

54.1 ±

4.31

71.9 ±

11.0

43.0 ±

10.6

60.5 ±

5.40

82.1 ±

15.5

40.7 ±

9.33

57.3 ±

5.26

76.9 ±

13.8

Plant protein, g/d 22.6 ±

5.43

24.5 ±

4.40

24.7 ±

5.01

28.3 ±

10.2

28.4 ±

5.47

28.2 ±

8.29

25.2 ±

8.19

26.5 ±

5.35

26.7 ±

7.01

Alcohol, g/d 18.8 ±

21.9

8.85 ±

11.6

7.1 ±

9.28

17.8 ±

21.0

9.30 ±

9.92

8.14 ±

9.75

18.4 ±

21.4

9.20 ±

10.8

7.66 ±

9.24

Vitamin A, IU/d 9880

±

6420

12,800

± 6210

16,100

±

7870

10,400

± 7440

12,300

±

5890

14,800

±

8440

10,300

± 7130

12,500

± 6310

15,100

±

7997

Vitamin B-6, mg/d 5.99 ±

15.0

7.44 ±

16.0

11.1 ±

22.1

7.41 ±

16.6

7.31 ±

18.0

9.59 ±

20.1

6.58 ±

15.5

7.76 ±

17.7

9.89 ±

20.0

Vitamin C, mg/d 262 ±

262

285 ±

244

332 ±

299

209 ±

239.7

205 ±

200

261 ±

374

243 ±

253

251 ±

237

284 ±

338

2



Calcium, mg/d 748 ±

328

956 ±

356

1140 ±

433

920.2

± 357

1080 ±

366

1340 ±

517

829 ±

346

1030 ±

370.2

1250

± 483

Magnesium, mg/d 296 ±

97.6

312 ±

93.1

375 ±

106

355 ±

124

339 ±

111

422 ±

139

328 ±

115

325 ±

105

401 ±

128

Sodium, g/d 2.08 ±

0.760

2.02 ±

0.633

2.26 ±

0.694

2.25 ±

0.727

2.08 ±

0.672

2.42 ±

0.760

2.19 ±

0.750

2.03 ±

0.629

2.32 ±

0.725

Values are presented as percentage of the selected category or means ± SDs, unless otherwise

indicated. Energy-adjusted total SAAs is equal to the sum of energy-adjusted methionine and

cysteine. CVD, cardiovascular disease; Q, quintile; SAA, sulfur amino acid.

Values are medians (IQRs).

In both Offspring and Third-Generation cohorts, individuals with the highest total SAA

intake had 1.6-fold (95% CI: 1.1, 2.3; P = 0.016) and 3.9-fold (95% CI: 1.6, 9.6; P = 0.003)

higher risks of T2D, respectively, than those with the lowest intake after further

adjustments for dietary and nondietary risk factors and comorbidity (Table 2). In the

meta-analysis, total SAA intake was associated with a 1.8-fold (95% CI: 1.3, 2.5; P = 0.001)

higher risk of T2D in the highest compared with the lowest SAA intake quintile in the

fully adjusted model (Figure 1A).

TABLE 2. HRs for risk of type 2 diabetes according to quintiles of energy-adjusted intakes

of total SAAs in the Offspring and Third-Generation cohorts

Offspring

n 644 645 644 645 644

SAA median, g/d 2.23 (2.02,

2.36)

2.60 (2.53,

2.66)

2.85 (2.79,

2.91)

3.09 (3.03,

3.17)

3.48 (3.36,

3.71)

1

2

1

Total SAAs Total SAA intake

P-

trend

Q1 Q2 Q3 Q4 Q5



SAA mean,  g/d 2.15 ± 0.272 2.60 ±

0.0824

2.85 ±

0.0669

3.10 ± 0.0839 3.59 ± 0.379

Cases, n 60 86 95 62 98

Cases, n ×

10⁵/person-y

697 917 985 600 969

Model 1 1.0 1.4 (1.0, 2.0)* 1.6 (1.2, 2.3)* 1.1 (0.7, 1.5) 1.9 (1.3,

2.6)***

<0.001

Model 2 1.0 1.4 (1.0, 1.9) 1.5 (1.1, 2.2)* 1.0 (0.7, 1.4) 1.6 (1.1, 2.4)* 0.074

Model 3 1.0 1.4 (1.0, 1.9) 1.5 (1.1, 2.1)* 0.9 (0.6, 1.4) 1.6 (1.1, 2.3)* 0.111

Third-Generation

n 641 641 641 641 641

SAA median, g/d 2.59 (2.35,

2.74)

3.01 (2.92,

3.08)

3.27 (3.20,

3.33)

3.54 (3.46,

3.63)

4.05 (3.87,

4.34)

SAA mean,  g/d 2.50 ± 0.324 3.00 ±

0.0883

3.27 ± 0.0717 3.55 ±

0.0997

4.22 ± 0.535

Cases, n 7 10 12 16 26

Cases, n ×

10⁵/person-y

176 254 303 408 665

Model 1 1.0 1.5 (0.6, 4.0) 2.0 (0.8, 5.2) 3.00 (1.2,

7.4)*

5.1 (2.2,

11.8)***

<0.001

Model 2 1.0 1.3 (0.5, 3.4) 1.6 (0.6, 4.2) 2.2 (0.9, 5.6) 4.1 (1.6,

10.1)**

<0.001

Model 3 1.0 1.3 (0.5, 3.4) 1.6 (0.6, 4.2) 2.2 (0.9, 5.6) 3.9 (1.6,

9.6)**

<0.001

 Values are medians (IQRs).

HRs are presented with the format of HR (95% CI). *,**,***Significantly different from the

reference group: P < 0.05; P < 0.01; P < 0.001. The numbers of participants in the Offspring
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cohort and Third-Generation cohort were 3222 and 3205, respectively. P/S fat ratio, ratio of

polyunsaturated fat to saturated fat; Q, quintile; SAA, sulfur amino acid.

The reference group.

Model 1: adjusted for age, sex, and total energy (kcal/d). Race is not included because of

limited information.

Model 2: adjusted for covariates in model 1 and lifestyle, dietary, and nondietary factors

including BMI (BMI <18.5, 18.5 to <25, 25 to ≤30, and >30), income (<US$50,000, and

≥US$50,000), education level (lower than bachelor’s degree, and bachelor’s degree or above),

physical activity (moderate to vigorous activity ≥3 times/wk, or not), smoking status (yes/no),

and intakes of alcohol (g/d), magnesium (mg/d), sodium (g/d), energy-adjusted P/S fat ratio,

calcium (mg/d), vitamin A (IU/d), vitamin C (mg/d), and vitamin B-6 (mg/d). Race is not

included because of limited information.

Model 3: adjusted for covariates in model 2 and baseline comorbidities including history of

cardiovascular disease. Race is not included because of limited information.

Values are presented as means ± SDs.
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FIGURE 1. HRs of type 2 diabetes according to quintiles of intakes of energy-adjusted

SAAs, methionine, and cysteine via meta-analysis for the Offspring and the Third-

Generation cohorts. A, B, and C show RRs of type 2 diabetes according to quintiles of

intakes of energy-adjusted SAAs, methionine, and cysteine in meta-analysis, respectively.

*Significantly different from the reference group. The vertical lines represented the 95%

CIs for each quintile compared with the lowest quintile (Q1) as the reference group.

Model 1: adjusted for age, sex, and total energy (kcal/d). Model 2: adjusted for covariates

in model 1 and lifestyle, dietary, and nondietary factors including BMI (BMI <18.5, 18.5 to

<25, 25 to ≤30, and >30), income (income <US$50,000, and income ≥US$50,000),

education level (lower than bachelor’s degree, and bachelor’s degree or above), physical

activity (moderate to vigorous activity ≥3 times/wk, or not), smoking status (yes/no), and

intakes of alcohol (g/d), magnesium (mg/d), sodium (g/d), energy-adjusted P/S fat ratio,

calcium (mg/d), vitamin A (IU/d), vitamin C (mg/d), and vitamin B-6 (mg/d). Model 3:

adjusted for covariates in model 2 and baseline comorbidities including history of

cardiovascular disease. P/S fat ratio, ratio of polyunsaturated fat to saturated fat; Q,

quintile; SAA, sulfur amino acid; T2D, type 2 diabetes.

Associations between the intake of methionine and cysteine individually with incident

T2D in the Offspring and Third-Generation cohorts are shown in Table 3. Comparing the

highest quintiles of intake with the lowest quintiles in model 3, the HRs for T2D for the

Offspring cohort were 1.5 (95% CI: 1.0, 2.1; P = 0.030) for methionine and 1.2 (95% CI: 0.8,

1.8; P = 0.327) for cysteine, and for the Third-generation cohort were 4.1 (95% CI: 1.6,

10.4; P = 0.003) for methionine and 4.5 (95% CI: 1.7, 11.7; P = 0.002) for cysteine. In the

meta-analysis of the fully adjusted models for both cohorts, the HRs of T2D comparing

the highest with the lowest intakes of methionine and cysteine were 1.7 (95% CI: 1.2, 2.3)

and 1.4 (95% CI: 1.0, 2.1), respectively (Figure 1B,C). Tests for linear trend across

increasing quintiles were significant in the meta-analysis and Third-Generation

separately (all P-trend < 0.05).

TABLE 3. HRs for risk of type 2 diabetes according to quintiles of energy-adjusted intakes

of individual methionine and cysteine in the Offspring and Third-Generation cohorts1
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Individual methionine intake

Offspring

n 644 645 644 645 644

Methionine,

median, g/d

1.39 (1.26,

1.48)

1.64 (1.59,

1.68)

1.81 (1.77,

1.84)

1.98 (1.93,

2.02)

2.24 (2.15,

2.39)

Methionine,

mean,  g/d

1.34 ± 0.181 1.63 ± 0.0520 1.81 ±

0.0448

1.98 ±

0.0572

2.31 ± 0.269

Cases, n 66 77 92 67 99

Cases, n ×

10⁵/person-y

753 817 974 645 986

Model 1 1.0 1.12 (0.9, 1.7) 1.5 (1.1,

2.0)*

1.1 (0.8, 1.5) 1.8 (1.3,

2.4)***

<0.001

Model 2 1.0 1.2 (0.8, 1.6) 1.3 (0.9, 1.8) 1.0 (0.7, 1.4) 1.5 (1.0,

2.1)*

0.096

Model 3 1.0 1.1 (0.8, 1.6) 1.3 (0.9, 1.8) 1.0 (0.7, 1.4) 1.5 (1.0,

2.1)*

0.116

Third-Generation

n 641 641 641 641 641

Methionine,

median, g/d

1.56 (1.42,

1.66)

1.83 (1.78,

1.87)

2.00 (1.96,

2.04)

2.17 (2.12,

2.23)

2.48 (2.37,

2.69)

Methionine,

mean,  g/d

1.51 ± 0.205 1.83 ± 0.0526 2.00 ±

0.0470

2.18 ±

0.0600

2.60 ± 0.374

Cases, n 6 10 10 17 28

Cases, n ×

10⁵/person-y

151 255 254 430 719

Cohort

P-

trend

Q1 Q2 Q3 Q4 Q5
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Model 1 1.0 1.7 (0.6, 4.8) 1.8 (0.7, 5.0) 3.6 (1.4,

9.1)**

6.4 (2.6,

15.5)***

<0.001

Model 2 1.0 1.4 (0.5, 3.8) 1.3 (0.5,

3.6)

2.4 (0.9,

6.4)

4.3 (1.7,

10.9)**

<0.001

Model 3 1.0 1.3 (0.5, 3.8) 1.3 (0.5,

3.7)

2.5 (0.9,

6.5)

4.1 (1.6,

10.4)**

<0.001

Individual cysteine intake

Offspring

n 644 645 644 645 644

Cysteine, median,

g/d

0.825 (0.751,

0.870)

0.957 (0.932,

0.978)

1.04 (1.02,

1.06)

1.13 (1.10,

1.15)

1.26 (1.21,

1.34)

Cysteine, mean,

g/d

0.795 ± 0.0964 0.955 ± 0.0284 1.04 ±

0.0223

1.13 ±

0.0283

1.30 ± 0.124

Cases, n 65 81 95 68 92

Cases, n ×

10⁵/person-y

764 879 99 655 885

Model 1 1.0 1.2 (0.9, 1.7) 1.5 (1.1,

2.1)*

1.0 (0.7, 1.4) 1.4 (1.0,

2.0)*

<0.001

Model 2 1.0 1.1 (0.8, 1.5) 1.3 (0.9, 1.8) 0.9 (0.6,

1.3)

1.2 (0.9, 1.8) 0.471

Model 3 1.0 1.1 (0.7, 1.5) 1.3 (0.9, 1.8) 0.8 (0.6,

1.2)

1.2 (0.8, 1.8) 0.586

Third-Generation

n 641 641 641 641 641

Cysteine, median,

g/d

0.984(0.896,

1.04)

1.15 (1.11, 1.17) 1.25 (1.22,

1.28)

1.38 (1.34,

1.42)

1.63 (1.54,

1.77)

Cysteine, mean,

g/d

0.946 ± 0.133 1.14 ± 0.0334 1.25 ±

0.0337

1.38 ±

0.0457

1.69 ± 0.221
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Cases, n 8 11 15 15 22

Cases, n ×

10⁵/person-y

203 278 382 379 565

Model 1 1.0 1.3 (0.5, 3.3) 2.2 (0.9,

5.2)

2.1 (0.9,

5.1)

3.8 (1.7,

8.6)**

<0.001

Model 2 1.0 1.3 (0.5, 3.3) 1.7 (0.7, 4.3) 2.1 (0.8,

5.3)

4.1 (1.6,

10.5)**

0.001

Model 3 1.0 1.5 (0.6, 3.8) 1.7 (0.7, 4.4) 2.3 (0.9,

5.8)

4.5 (1.7,

11.7)**

0.001

 Values are medians (IQRs).

HRs are presented with the format of HR (95% CI). *,**,***Significantly different from the

reference group: P < 0.05; P < 0.01; P < 0.001. The numbers of participants in the Offspring

cohort and Third-Generation cohort were 3222 and 3205, respectively. P/S fat ratio, ratio of

polyunsaturated fat to saturated fat; Q, quintile; SAA, sulfur amino acid.

The reference group.

Model 1: adjusted for age, sex, and total energy (kcal/d). Race is not included because of

limited information.

Model 2: adjusted for covariates in model 1 and lifestyle, dietary, and nondietary factors

including BMI (BMI <18.5, 18.5 to <25, 25 to ≤30, and >30), income (<US$50,000, and

≥US$50,000), education level (lower than bachelor’s degree, and bachelor’s degree or above),

physical activity (moderate to vigorous activity ≥3 times/wk, or not), smoking status (yes/no),

and intakes of alcohol (g/d), magnesium (mg/d), sodium (g/d), energy-adjusted P/S fat ratio,

calcium (mg/d), vitamin A (IU/d), vitamin C (mg/d), and vitamin B-6 (mg/d). Race is not

included because of limited information.
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Model 3: adjusted for covariates in model 2 and baseline comorbidities including history of

cardiovascular disease. Race is not included because of limited information.

Values are presented as means ± SDs.

Positive associations between the intake of total SAAs and individual SAAs with T2D risk

were also significant in the combined cohort (Supplemental Table 2). All P-trend values

across increasing quintiles were <0.05 in the combined cohort (Supplemental Table 2).

When we additionally adjusted for both animal and plant protein intakes, the positive

association of total SAA intake with T2D became attenuated, but remained significant (

Supplemental Table 3). In additional sensitivity analysis, the association between

dietary total SAAs and T2D risk remained in the same positive trend, but became

nonsignificant when absolute SAA was used as the exposure (Supplemental Table 4).

Furthermore, baseline total SAAs was positively associated with T2D risk (

Supplemental Figure 2), and similar associations were observed when relating the

cumulative average total SAA intake from examination 5 to examination 8 with T2D

diagnosed from examination 8 to examination 9 (Supplemental Figure 3). Similar results

are presented in Supplemental Figures 4 and 5 in the meta-analysis for the sensitivity

analysis. When individuals reporting intake of SAAs below the EAR were excluded,

similar significant positive associations between total SAAs and individual SAA intake

and risk of T2D were observed in the subgroup analysis for all cohorts (

Supplemental Table 5).

Discussion

In 2 large, prospective cohorts of US adult men and women, we observed consistent

positive associations of long-term consumption of SAAs, including methionine and

cysteine, individually and together, with the risk of T2D. These associations were

independent of traditional diabetes risk factors, including CVD history. Together with

previous epidemiological studies (10, 15, 16, 33 these new findings provide insights into

the importance of dietary SAAs as a modifier of T2D risk and the potential for reduced

SAA intake as a novel dietary intervention to prevent T2D.

The crude incidence of T2D in the Offspring cohort (1991–2014: 5.4 per 1000 persons per

year) with a mean age of 54.3 y, and the Third-Generation cohort (2002–2011: 2.5 per

7
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1000 persons per year) with a mean age of 40.2 y, were similar to those in other studies (

34, 35) and somewhat lower than in the National Health Interview Survey of US adults

(for 1980 and 2012: 2.0 and 3.7 per 1000 persons per year for 20–44-y-old adults and 4.6

and 12.1 per 1000 persons per year for 45–64-y-old adults) (36). This difference could be

due, in part, to the selective inclusion/exclusion criteria resulting in a saturation effect (

35), could reflect a regional difference because the FHS is not a nationally representative

sample (37), or could result from the use of the self- or proxy report of diabetes diagnosis

used in the National Health Interview Survey and our study (36).

The significant associations between SAA consumption and T2D appeared to be robust,

with consistent findings observed in both the Offspring and Third-Generation cohorts,

although stronger associations were found for the latter cohort. Significant associations

were also observed in the combined cohort and confirmed when analyses were

conducted using fixed-effects meta-analysis. Besides, whenever exposure was defined as

cumulative average intake, the cumulative average exposure from examination 5 to

examination 8, or baseline intake, the significantly positive associations between SAA

consumption and T2D remained. Finally, significant associations were also observed for

analyses of the individual SAAs, methionine and cysteine, suggesting that the effects

were not specific for either one. Because the primary exposure, dietary SAA intake, is

correlated with protein, especially animal protein, we included adjustments for this

factor to better distinguish the specific role of SAAs. The positive relation remained when

further adjusted for energy-adjusted plant protein intake in fully adjusted models,

whereas adjustment for energy-adjusted animal protein intake attenuated the

associations. Of note, adjustment for animal protein could be considered an

overadjustment (22), because low SAA intake was associated with decreased

consumption of animal-based diets. Moreover, this finding was also consistent with the

fact that SAA content in plant protein is far less than in animal protein (3).

For the first time, to assess SAA consumption, the cumulative average dietary intake was

calculated from FFQ results as a means of reducing within-person variation over time

and to better reflect long-term dietary habits (38). Although crude, FFQs used to assess

long-term dietary intake can collect complex information and achieve relatively accurate

data, especially when adjusting for energy (39, 40, 41). The 24-h food recall method we

have used in the previous studies, on the other hand, could accurately record the actual

intake on specific days to estimate the short-term average diet of a population (39).

However, when used for measuring long-term dietary intake, this method might cause
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significant random measurement errors due to day-to-day variation of the diet and

increase time and cost, as well as recall error (42, 43).

Mean SAA intake values were 2- to 4-fold higher than the adults’ EAR for SAA of 15

mg/kg/d (32) in both Offspring and Third-Generation cohorts. It was also noteworthy that

in the Third-Generation cohort, dietary SAA intake was 10–20% higher, and T2D HRs were

∼2-fold higher than the Offspring cohort. These differences might reflect a greater intake

of animal protein in younger adults compared with older ones (44), because the content

of SAAs is generally higher in animal than vegetable proteins. In a comparison of 3

European cohorts, the younger cohort (Young Fins, mean age of 38 y) exhibited a

significantly higher intake of animal protein and a higher T2D risk than the older 2

cohorts (44). In this report, the Young Finns cohort (mean age: 38.0 y) consumed 71.2 g/d

animal protein, which was nearly 2-fold greater than that in Lifelines (mean age: 45.7 y)

and NQplus (mean age: 53.5 y) cohorts. In a dose–response meta-analysis of prospective

studies, a 5% energy increment from dietary total and animal protein intake was related

to a 12% higher risk of T2D (45). We conducted additional analysis to compare the

association between animal protein and T2D risk with and without adjusting for SAA

intake. We found a significant association between animal protein and T2D, which

became nonsignificant after adjusting for SAAs. This suggests that SAAs might contribute

to the positive association seen between animal protein and T2D risk. Interestingly, the

association between plant protein intake and T2D was a significant U-shaped curve, with

the most risk reduction at intake of ∼6% of energy intake from plant protein. Additionally,

the animal protein to plant protein ratio was slightly lower in the Third-Generation

cohort at quintile 1 and higher at quintiles 3 and 5 compared with the Offspring cohort.

Although no significant difference between the animal protein to plant protein ratio was

observed between the cohorts, it should still be noted that some studies demonstrated

that the animal protein to plant protein ratio was positively associated with fasting blood

glucose (46) and insulin resistance (47). Overall, the associations observed were more

pronounced in the upper quintile of SAA intake, which could be indicative of a negative

health impact of excessive SAA consumption. The finding is consistent with the study in

US adults from the NHANES III (11), in which the associations between each of total SAAs,

methionine, and cysteine intake and diabetes-specific mortality were particularly

observed in the fourth and fifth quintiles.

To our knowledge, this is the first study that examined the association between long-

term dietary SAA intake and risk of diabetes in humans. In a previous study, we
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examined the association between dietary SAA intake and risk factors for

cardiometabolic diseases in the NHANES III study (10). In that representative study of the

US adult population, we found dietary SAA intake was positively associated with higher

concentration of metabolic disease–related serum biomarkers, including cholesterol,

insulin, and blood glucose (10). Participants who reported the lowest levels of SAA intake,

which were close to the dietary requirements, had the lowest cardiometabolic disease

risk, suggesting that optimal levels of SAA intake may be close to the EAR (10). The

relation remained significant regardless of how much protein was consumed, indicating

that the health risks were related to not only the absolute SAA intake, but also the

proportion of SAAs consumed (10).

Our findings are consistent with previous laboratory animal studies, which have

provided direct evidence that excessive SAA intake is related to insulin resistance,

hyperglycemia, or T2D in rats, mice, and pigs (6, 48, 49, 50). These findings are also

consistent with several recent human studies in which dietary SAA intake or related

genetic markers were associated with diabetes risk, fasting glucose, or insulin resistance

(13, 15, 16, 33). Both dietary methionine and cysteine intakes were positively related to

overweight or obesity, an important risk factor for T2D (16). In an internet-based cross-

sectional study of 936 participants aged 18 to 40 y in China, dietary SAA intake was

positively associated with BMI, waist circumference, and the prevalence of overweight or

obesity (16). In other studies, higher blood concentrations of free SAAs, which could

reflect higher SAA intake (51, 52), were associated with higher risk of T2D (16, 33, 53).

Evidence from a Chinese multiprovincial cohort study conducted in communities of

Shandong province also revealed that higher plasma cysteine concentrations were

significantly associated with a greater diabetes prevalence (33). Similarly, in a large-scale

prospective cohort in older Chinese men and women in Hong Kong, each SD increment in

plasma total cysteine concentration was associated with a 68% significantly higher risk of

diabetes (53). Plasma methionine was also found to be associated with T2D in a

prospective family-based study located in southwestern Netherlands (54). A systematic

review revealed that elevated plasma homocysteine, which forms during the breakdown

of methionine, was causally related to increased risk of T2D (55). The association

between SAAs and T2D-related risk factors was not only found in adults, but also

observed in children. In a cross-sectional study in 601 children aged 12–18 y in the

United States, dietary SAA intake was demonstrated to be positively associated with

general body adiposity, central obesity, and fat mass (13). In 26 Japanese children aged 9

https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib10
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib6
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib48
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib49
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib50
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib15
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib33
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib51
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib52
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib33
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib53
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib33
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib53
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib54
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib55
https://www.sciencedirect.com/science/article/pii/S0022316623086236?via%3Dihub#bib13


or 10 y with moderate to severe obesity and hyperlipidemia, Suzuki et al. (15) also found

that plasma methionine was positively associated with plasma glucose and insulin

resistance via retrospective analysis.

The positive association of SAA consumption with T2D risk suggests that dietary SAA

restriction could be a promising regime for the prevention of T2D (56). Indeed, there are

biologically plausible mechanisms for the beneficial effects of dietary SAA restriction on

T2D risk. Dietary SAA restriction might improve insulin secretion and its signaling

pathway to benefit glucose homeostasis and insulin sensitivity (56). Dietary SAA

restriction also can induce the release of fibroblast growth factor-21 (FGF-21) in animal

models (6, 48, 51). Reductions in FGF-21 can impair peripheral insulin sensitivity

manifesting as insulin resistance, pancreatic islet hyperplasia, and pancreas dysfunction

in the mouse (57). Meanwhile, upregulation or release of FGF-21 can promote

metabolism and improve glucose uptake with other biomarkers and signal pathways in

or out of the pancreas (58, 59). Olsen et al. (51) revealed that restricting dietary SAAs

induced elevated serum FGF-21 in a double-blind, randomized controlled pilot study in

20 overweight or obese Norwegian women. Alternatively, changes in autophagic activity

have been implicated in the progression of T2D through β-cell function disorder and the

development of insulin resistance (60). Methionine and its downstream metabolite S-

adenosylmethionine have been implicated in the inhibition of autophagy via protein

phosphatase 2A (PP2A) signaling in which the methylation of PP2A is a sensing

mechanism of cellular methionine and its metabolite (56). In methionine-restricted mice,

autophagy maintaining β-cell homeostasis is markedly activated, which improves

peripheral insulin sensitivity (56, 60).

Our study had some strengths and limitations. An important strength of our study was

the prospective nature of the study design, which minimized the likelihood of recall and

selection biases, and the high follow-up rates, which largely reduced the concern that the

results were affected by differential follow-up rates. In addition, the cumulative averages

of repeated assessments of intake were used to minimize random measurement error

caused by within-person variation and to account for real changes in diet over time.

Moreover, considering the heterogeneity of the 2 different cohorts, we used meta-

analysis to pool the overall results. We also directly combined the cohorts to test the

robustness of the combined results, and overall outcomes were similar to those obtained

for the meta-analysis. Residual confounding is a common and unavoidable issue in

observational studies. We sought to minimize the influence of the potential confounders
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by controlling for potentially confounding variables including major lifestyle, dietary risk

factors, and health status. Furthermore, most of the participants in our study were

Caucasians living in Massachusetts, who might not represent the overall US adult

population. However, this generated within-study homogeneity. Another limitation of

the study is that the T2D diagnosis date was defined as the examination date when the

subject first met the T2D diagnosis criteria.

In summary, we observed consistent associations between higher dietary intake of SAAs

and higher risk of T2D in 2 prospective cohorts. Our findings emphasize the need to

identify the diets with more appropriate dietary SAA intake, which could provide useful

approaches to public health nutrition for the prevention and treatment of T2D. More

prospective studies, preferably in populations with various eating habits, and

randomized feeding trials are warranted to investigate the potential roles of low-SAA

dietary patterns in the prevention of T2D.
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